新闻中心
NEWS
作者:贝斯特bst2222     时间:2026-02-09     浏览:     来源:贝斯特官网

根据控制器与电机之间的控制关系

  在实现自动驾驶汽车的控制过程中,会出现很多疑问。比如控制车辆的转向,是输入方向盘转角位置还是输入扭矩?在进行加减速行驶时,是根据力度改变油门开度吗?在进行刹车制动时,怎样能精确控制制动百分比数值?

  实现这些信息交互,与车辆的底盘组件存在很大的关系。要了解自动驾驶控制器与底盘组件之间信息交互关系,就要先了解车辆的底盘控制组件的原理。

  自动驾驶的实现,首先依赖感知传感器对道路周边环境信息进行采集,包括摄像头、激光雷达、毫米波雷达和超声波等,采集的数据传输出到中央计算单元进行计算,用来识别车辆周边障碍物和可行驶区域,进行路线规划和控制,

  最后制定方向盘转角和速度等信息,传输到底盘执行机构,按照指令进行精确执行。

  在整个控制过程中,底盘执行机构的功能要完善,系统响应和精度要高。如果把自动驾驶车辆比作人,那么底盘执行机构就是我们通常意义上的手和脚,用来做控制执行,是自动驾驶控制技术的核心部件,这对整个底盘系统的要求非常高。

  最直观的体现,便是用于控制车辆方向的线控转向。自动换道在避险回退过程中,常常出现回退过度甚至偏出本车道导致不安全,继而系统又通过较大的回调力矩将车辆拉回车道中央。在自动驾驶中或驾驶员控制换道过程中,驾驶员缓慢施加力矩进行方向盘控制时,容易出现系统抢夺方向盘。

  这些切实存在的问题,严重影响自动驾驶控制精度,延长落地的时间。对于自动驾驶而言,需要结合实际存在的问题给出相应的解决方案,不断协调线控底盘和控制器之间的交互问题,改进线控底盘技术,这无疑会大大促进线控底盘的技术。

  而种类繁多的底盘传感器,信号模式和处理方法各异,且大量传感器信号汇入控制器对信号实时处理提出更高要求,因此亟须研究新型底盘域控制器,对多源传感器信号实时处理、校验与解算理论。

  而底盘车辆及轮胎动力学呈现复杂非线性特性,因此亟须深入研究车辆复杂动力学模型精确解算机制,促进智能汽车的动力学应用发展。

  其三,智能汽车在复杂场景下需要精度的感知状态,保证驾驶员视角。因此亟须研究复杂交通场景下底盘动力学域控制对车辆动力学状态的精确感知与预瞄技术,探索车辆运行动力学稳定边界精确量化机制,消除高复杂、动态交通环境的不确定性。

  源于飞机的控制系统,其将飞行员的操纵命令转化成电信号通过控制器控制飞机飞行。

  线控汽车采用同样的控制方式,可利用传感器感知驾驶人的驾驶意图,并将其通过导线输送给控制器,控制器控制执行机构工作,实现汽车的转向、制动、驱动等功能,从而取代传统汽车靠机械或液压来传递操纵信号的控制方式。

  线控底盘主要有五大系统,分别为线控转向、线控制动、线控换挡、线控油门、线控悬挂。从执行端来看,线控油门、线控换挡、线控空气悬挂虽然技术都很成熟了,但最为关键的转向和制动系统目前还没有一套可以适用于L4驾驶的稳定的量产产品。

  执行机构使用外来能源完成操纵指令及相应的任务,其执行过程和结果受电子控制器的监测和控制。

  根据驾驶员输入的扭矩,以及车速等信息,ECU计算并控制电动机带动转向助力泵转动,产生高压液体;

  液压通过转向油管传递到液压助力转向机上,液压推动液压助力转向机上的双作用液压缸的活塞,产生压力,对齿条的横向直线运动进行助力;

  第一种是对转向柱的转矩进行助力,这种叫C -EPS (Column - EPS);

  第二种是对转向柱底端的齿轮齿条机构中的齿轮进行助力,这种叫P - EPS(Pinion - EPS);

  第三种是在转向机上对齿条的直线运动进行助力,这种叫R - EPS(Rack - EPS);而R - EPS根据传动的方式不同,又可以分为R-EPS,DP-EPS(双小齿轮EPS)和BD-EPS(带传动EPS)。

  电磁离合器。电磁离合器提供机械冗余,可实现转向盘与车轮的机械解耦。根据有无⑤,SBW系统可以分为保留机械软连接的 SBW系统和无机械连接的 SBW系统2大类。由此,人们研究双电机安全冗余线控转向系统。该方案包括转向操纵机构、转向执行机构、电子线传控制网络、电源系统和各种辅助结构。该方案将传统的机械转向与电子控制技术紧密结合起来,线传主动转向与机械操纵转向两种模式通过电磁离合器可任意切换,而且通过故障识别,机械操纵转向可以作为线传主动转向备份,提升安全性。

  3.2.1. 路感反馈控制策略研究由于线控转向系统取消了方向盘和转向车轮之间的机械连接,通过转向角信号和转向电机控制车轮转向,导致路感无法直接反馈给驾驶员,这从驾驶安全性角度考虑是绝对不允许的。

  针对这个问题,线控转向系统的方向盘总成中包含有路感模拟电机,用来产生作用于方向盘的阻力矩以模拟路感。路感是一个比较抽象的定义,其定义之一是指驾驶员通过方向盘得到的车辆行驶中的转向阻力矩,该阻力矩主要包含回正力矩和摩擦力矩2部分。其中,回正力矩是使车轮恢复到直线行驶位置的主要力矩之一,其数值的确定是车辆设计中的一个难题,通常由经验、半经验、统计或实验的方法获得。回正力矩与车辆前轮的受力状态存在直接关系,而前轮受力又和车辆实时的运动状态及路面附着直接相关。

  通常是将路感设计为方向盘转角、车速、横摆角速度等参数的非线性函数关系式,在不同条件下为驾驶员提供不同的路感,简单高效,但是自适应性和精度较差。

  是通过参考传统车辆路感产生的动力学原理建立相关的动力学模型,根据车辆的动态响应、驾驶员的方向盘输入等计算与路感相关的轮胎力、摩擦力矩等,最终计算出路感。获得期望的转向阻力矩,剩下的工作就是控制路感反馈电机达到期望的力矩。最常用的算法是PID算法。

  。其中,上层策略根据当前车辆的状态和驾驶员的输入,在尽量满足控制目标和约束条件的情况下,计算出期望的前轮转角;而下层策略则是由转向控制器控制转向电机执行该指令,快速、准确地达到该目标转角。

  由于线控转向系统的灵活性,衍生出很多控制算法。总体而言,算法可以总结为基于经验设计的方法和基于动力学模型计算的方法这 2 大类。

  基于经验设计的方法主要是根据车辆在不同工况下对操纵稳定性要求的不同来进行设计。在低速工况下,汽车应具有不沉重而适度的转向盘力与不过于大的方向盘转角,还应具有良好的回正性能;高速、低侧向加速度工况下,汽车应具有良好的横摆角速度频率特性、直线行驶能力、回正性能和较大的转向灵敏度,且转向盘力不宜过小而应维持在一定数值,以给驾驶者稳定的路感。

  基于动力学模型计算的方法旨在提高车辆的稳定性。因此,也有研究人员将这种方法归结为车辆稳定性控制方法。其基本思路是根据当前车辆状态、外界环境和驾驶员输入提出控制目标,然后根据控制目标计算参考前轮转角,控制前轮转角改变轮胎侧向力,对横摆力矩进行补偿。3.2.3. 故障诊断与容错控制

  在线控转向中,转向的动力来源于电机主要包括了两方面:用来给驾驶员提供转向时的路感和动力。电机的可靠性是研究者们首先要考虑的因素,电机和控制器的容错就体现得十分重要。实时监测技术和设置冗余硬件是保证控制器稳定运行的两种手段,故而可以实现容错控制,线控转向的运行的品质得到了保证,根据控制器与电机之间的控制关系,可以对电机出现故障时所需要的补偿控制进行相关研究,那样就为能够在最大限度上保证线控转向的可靠性提供了可能。

  从全球竞争格局来看,博世、采埃孚、捷太格特、NSK、耐世特等国际巨头有成熟的线控转向产品和技术,但在商业化方面仍然遇到了瓶颈。

  在线控底盘技术中是难度最高的,但也是最关键的技术。线控制动系统掌控着自动驾驶的底盘安全性和稳定控制,只有拥有足够好的制动性能(包括响应速度快、平顺性好等),才能为我们的安全提供良好保障。

  乘用车的线控系统自威廉·迈巴赫于1900 年发明鼓式制动器起,至今已有120年的历史,期间诞生了多种形式的制动系统,

  EHB 没有了真空助力器,结构更简单紧凑;电动驱动,响应也更加迅速;方便实现四轮制动分别控制;容易集成ABS (Anti-lock Braking System), TCS (Traction Control System) 以及 ESC (Electric Stability Control)等辅助功能,兼容性强;踏板解耦,能够主动制动以及能量回收。EHB系统仍保留了传统的液压管路部分,是电子和液压相结合的产物。

  典型带有E-Booster的EHB系统如图所示。踏板位移和踏板力经电子传感器传导给电子 ECU,然后经过不同的助力形式,如电动液压泵高压蓄能器或者直流电机等推动建立起液压,液压再分配给四个制动轮缸。

  电子机械制动 EMB 系统结构显得更简洁了,取消了制动系统的液压备份部分,

  踏板信号与执行器之间完全靠电子信号传输,与 ABS、TCS、ESC 等模块配合实现车辆底盘的集成控制, 是真正的线控制动系统。

  EMB 结构精简,能够降低整车质量,易于维护,便于安装调试;完全解耦,制动响应更加迅速;便于底盘域控制及智能驾驶技术发展。

  上层策略根据当前车辆状态和驾驶员操作,向 BBW系统发出制动请求,BBW系统则需要准确、快速地响应这个请求。主动制动旨在提高车辆的稳定性和安全性,高级驾驶辅助系统(ADAS)、紧急制动系统 (AEB)及自动驾驶等都使用到了这一功能。目前,所有关于主动制动的研究基本分为基于经验设计的方法和基于动力学模型计算的方法。几乎所有常见的控制算法都可以其中找到应用,如PID算法、最优控制、鲁棒控制、滑模控制、模糊控制、神经网络控制、模型预测控制。

  制动能量回收系统的中协调分配电制动力矩和制动力矩是关键技术之一, 控制策略的研究基本围绕这一点展开。

  线控驱动,即Throttle-By-Wire,作为最成熟的线控技术之一,可通过直接扭矩通讯、伪油门安装、节气门调节等方法实现。

  针对开放发动机和电机扭矩通信接口协议的车辆,线控驱动控制器直接通过控制器局域网络 (CAN) 向发动机或者电机发送目标扭矩请求,实现整车加速度控制。此种方案无需进行机械改装,结构简单可靠。

  针对不开放扭矩通信接口协议的车辆,安装节气门调节机构或者伪油门也可实现线控驱动功能。控制器根据车辆状态、加速踏板开度及其变化速率,利用内部算法程序预判驾驶员需求功率或转矩,然后通过电信号控制执行电机的动作,调节发动机节气门开度,进而改变发动机输出扭矩和功率。

  免责声明:文章作者专注的汽车人,版权归原作者所有,文中观点仅供分享交流,不代表本公众号立场。如涉及版权等问题,请您告知,我们将及时处理。

  声明:本文由入驻搜狐公众平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。